Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Case Rep Neurol ; 15(1): 146-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497262

RESUMO

Dominant mutations in serine palmitoyltransferase long chain base subunit 1 (SPTLC1), a known cause of hereditary sensory autonomic neuropathy type 1 (HSAN1), are a recently identified cause of juvenile amyotrophic lateral sclerosis (JALS) with slow progression. We present a case of SPTLC1-associated JALS followed for 30 years. She was initially evaluated at age 22 years for upper extremity weakness. She experienced gradual decline in muscle strength with development of weakness and hyperreflexia in lower extremities and diffuse fasciculations in the upper extremities at 26 years. She lost independent ambulation at age 45 years. Pulmonary function declined from a forced vital capacity of 94% predicted at 27 years to 49% predicted at 47 years, and she was hospitalized twice for respiratory failure. To our knowledge, this is the longest documented follow-up period of JALS caused by a de novo pathogenic variant in SPTLC1.

2.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980188

RESUMO

Barrier-to-autointegration factor (BAF) is an essential component of the nuclear lamina. Encoded by BANF1, this DNA binding protein contributes to the regulation of gene expression, cell cycle progression, and nuclear integrity. A rare recessive BAF variant, Ala12Thr, causes the premature aging syndrome, Néstor-Guillermo progeria syndrome (NGPS). Here, we report the first dominant pathogenic BAF variant, Gly16Arg, identified in a patient presenting with progressive neuromuscular weakness. Although disease variants carry nearby amino acid substitutions, cellular and biochemical properties are distinct. In contrast to NGPS, Gly16Arg patient fibroblasts show modest changes in nuclear lamina structure and increases in repressive marks associated with heterochromatin. Structural studies reveal that the Gly16Arg substitution introduces a salt bridge between BAF monomers, reducing the conformation ensemble available to BAF. We show that this structural change increases the double-stranded DNA binding affinity of BAF Gly16Arg. Together, our findings suggest that BAF Gly16Arg has an increased chromatin occupancy that leads to epigenetic changes and impacts nuclear functions. These observations provide a new example of how a missense mutation can change a protein conformational equilibrium to cause a dominant disease and extend our understanding of mechanisms by which BAF function impacts human health.


Assuntos
Núcleo Celular , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Cromatina , Proteínas de Ligação a DNA/metabolismo , Fibrinogênio
3.
Sci Adv ; 9(7): eabq7744, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800423

RESUMO

SMCHD1 mutations cause congenital arhinia (absent nose) and a muscular dystrophy called FSHD2. In FSHD2, loss of SMCHD1 repressive activity causes expression of double homeobox 4 (DUX4) in muscle tissue, where it is toxic. Studies of arhinia patients suggest a primary defect in nasal placode cells (human nose progenitors). Here, we show that upon SMCHD1 ablation, DUX4 becomes derepressed in H9 human embryonic stem cells (hESCs) as they differentiate toward a placode cell fate, triggering cell death. Arhinia and FSHD2 patient-derived induced pluripotent stem cells (iPSCs) express DUX4 when converted to placode cells and demonstrate variable degrees of cell death, suggesting an environmental disease modifier. HSV-1 may be one such modifier as herpesvirus infection amplifies DUX4 expression in SMCHD1 KO hESC and patient iPSC. These studies suggest that arhinia, like FSHD2, is due to compromised SMCHD1 repressive activity in a cell-specific context and provide evidence for an environmental modifier.


Assuntos
Anormalidades Congênitas , Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral , Nariz , Fatores de Transcrição , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Congênitas/genética , Nariz/anormalidades
4.
J Med Case Rep ; 17(1): 22, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683067

RESUMO

BACKGROUND: Filar cysts are frequently found on neonatal ultrasound and are physiologically involuting structures with natural resolution. Hence, there has been no previous histologic correlation. Ventriculus terminalis is a focal central canal dilation in the conus medullaris and usually not clinically significant. Extra-axial cyst at the conus-filum junction connected to ventriculus terminalis is extremely rare, especially when associated with tethered lipomatous filum terminale and with progressive cyst enlargement. CASE PRESENTATION: A Caucasian female neonate with abnormal gluteal cleft had ventriculus terminalis cyst with an extra-axial cyst at the conus-filar junction and taut lipomatous filum on ultrasound examination and magnetic resonance imaging. This persisted at 6-month follow up imaging. In light of the nonresolving extra-axial mass and thick taut lipomatous filum, the child underwent L1-L3 osteoplastic laminectomies. The extra-axial cyst expanded after bony decompression and furthermore on dural opening; visualized on ultrasound. It communicated with the central canal and was documented with intraoperative photomicrographs. It was excised and filum sectioned. Histological immunostaining of the cyst wall showed neuroglial and axonal elements. The child did well without deficits at 4-year follow up with normal urodynamics. CONCLUSION: Progression dilation of ventriculus terminalis and extra-axial conofilar cyst with tethered lipomatous filum will likely progress to clinical significance and require surgical intervention. The embryologic basis for this pathology is discussed, with literature review.


Assuntos
Cauda Equina , Cistos , Criança , Recém-Nascido , Animais , Humanos , Lactente , Feminino , Moela das Aves , Medula Espinal/patologia , Cistos/diagnóstico por imagem , Cistos/cirurgia , Dilatação Patológica/patologia , Imageamento por Ressonância Magnética
5.
AAPS J ; 25(1): 12, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539515

RESUMO

Duchenne muscular dystrophy (DMD) is a degenerative muscular disease affecting roughly one in 5000 males at birth. The disease is often caused by inherited X-linked recessive pathogenic variants in the dystrophin gene, but may also arise from de novo mutations. Disease-causing variants include nonsense, out of frame deletions or duplications that result in loss of dystrophin protein expression. There is currently no cure for DMD and the few treatment options available aim at slowing muscle degradation. New advances in gene therapy and understanding of dystrophin (DYS) expression in other muscular dystrophies have opened new opportunities for treatment. Therefore, reliable methods are needed to monitor dystrophin expression and assess the efficacy of new therapies for muscular dystrophies such as DMD and Becker muscular dystrophy (BMD). Here, we describe the validation of a novel Western blot (WB) method for the quantitation of mini-dystrophin protein in human skeletal muscle tissues that is easy to adopt in most laboratory settings. This WB method was assessed through precision, accuracy, selectivity, dilution linearity, stability, and repeatability. Based on mini-DYS standard performance, the assay has a dynamic range of 0.5-15 ng protein (per 5 µg total protein per lane), precision of 3.3 to 25.5%, and accuracy of - 7.5 to 3.3%. Our stability assessment showed that the protein is stable after 4 F/T cycles, up to 2 h at RT and after 7 months at - 70°C. Furthermore, our WB method was compared to the results from our recently published LC-MS method. Workflow for our quantitative WB method to determine mini-dystrophin levels in muscle tissues (created in Biorender.com). Step 1 involves protein extraction from skeletal muscle tissue lysates from control, DMD, or BMD biospecimen. Step 2 measures total protein concentrations. Step 3 involves running gel electrophoresis with wild-type dystrophin (wt-DYS) from muscle tissue extracts alongside mini-dystrophin STD curve and mini-DYS and protein normalization with housekeeping GAPDH.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Masculino , Recém-Nascido , Humanos , Distrofina/genética , Distrofina/análise , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Biópsia , Western Blotting
6.
Child Neurol Open ; 9: 2329048X221140298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419651

RESUMO

Dysferlinopathies are a group of phenotypically heterogeneous disorders caused by pathogenic variants in the DYSF (DYStrophy-associated Fer-1-like) gene encoding dysferlin. The phenotypic spectrum includes Miyoshi muscular dystrophy (MMD), limb-girdle muscular dystrophy type R2, distal myopathy with anterior tibial onset, and isolated hyperCKemia. MMD is characterized by muscle weakness and atrophy predominantly affecting the calf muscles with symptoms onset between 14 and 40 years of age. There is no clear phenotype - genotype correlation for dysferlinopathy. We describe a 15-year-old girl who presented with a phenotype consistent with MMD. However, she was initially treated for presumed polymyositis without improvement. Subsequent genetic testing revealed two novel variants in DYSF: c.3225dup (p.Gly1076Trpfs*38) in exon 30 and c.3349-2A > G (Splice acceptor) in intron 30. No dysferlin was detected in a muscle biopsy using immunostains and western blots, a result consistent with dysferlinopathy that supports the pathogenicity of the DYSF variants.

7.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886926

RESUMO

Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.


Assuntos
Aldeído Liases , Distrofia Muscular de Duchenne , Aldeído Liases/genética , Aldeído Liases/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Esfingosina/metabolismo
8.
Child Neurol Open ; 9: 2329048X221097518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557983

RESUMO

Limb-girdle muscular dystrophy R9 (LGMD2I, LGMDR9) is an autosomal recessive disorder caused by pathogenic variants in the fukutin-related protein (FKRP) gene. We describe a 17 year old boy with LGMDR9 whose symptoms began at age 5 years. Muscle histopathology, immunostaining, and western blotting were consistent with a dystroglycanopathy. Genetic testing identified maternal inheritance of the most common pathogenic FKRP variant c.826C>A (p.L276I). Also detected was a novel insertion and duplication on the paternally inherited FKRP allele: a single nucleotide insertion (c.948_949insC) and an eighteen nucleotide duplication (c.999_1017dup18) predicted to result in premature translation termination (p.E389*). Based on the clinical features and course of the patient, heterozygosity for the common pathogenic FKRP variant, and abnormal glycosylation of alpha-dystroglycan, we suggest that the novel FKRP insertion and duplication are pathogenic. This case expands the genetic heterogeneity of LGMDR9 and emphasize the importance of muscle biopsy for precise diagnosis.

9.
Neurology ; 98(13): e1384-e1396, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35121673

RESUMO

BACKGROUND AND OBJECTIVES: Facioscapulohumeral muscular dystrophy type 2 (FSHD2) and arhinia are 2 distinct disorders caused by pathogenic variants in the same gene: SMCHD1. The mechanism underlying this phenotypic divergence remains unclear. In this study, we characterize the neuromuscular phenotype of individuals with arhinia caused by SMCHD1 variants and analyze their complex genetic and epigenetic criteria to assess their risk for FSHD2. METHODS: Eleven individuals with congenital nasal anomalies, including arhinia, nasal hypoplasia, or anosmia, underwent a neuromuscular examination, genetic testing, muscle ultrasound, and muscle MRI. Risk for FSHD2 was determined by combined genetic and epigenetic analysis of 4q35 haplotype, D4Z4 repeat length, and methylation profile. We also compared expression levels of pathogenic DUX4 mRNA in primary myoblasts or dermal fibroblasts (upon myogenic differentiation or epigenetic transdifferentiation, respectively) in these individuals vs those with confirmed FSHD2. RESULTS: Among the 11 individuals with rare, pathogenic, heterozygous missense variants in exons 3-11 of SMCHD1, only a subset (n = 3/11; 1 male, 2 female; age 25-51 years) met the strict genetic and epigenetic criteria for FSHD2 (D4Z4 repeat unit length <21 in cis with a 4qA haplotype and D4Z4 methylation <30%). None of the 3 individuals had typical clinical manifestations or muscle imaging findings consistent with FSHD2. However, the patients with arhinia meeting the permissive genetic and epigenetic criteria for FSHD2 displayed some DUX4 expression in dermal fibroblasts under the epigenetic de-repression by drug treatment and in the primary myoblasts undergoing myogenic differentiation. DISCUSSION: In this cross-sectional study, we identified patients with arhinia who meet the full genetic and epigenetic criteria for FSHD2 and display the molecular hallmark of FSHD-DUX4 de-repression and expression in vitro-but who do not manifest with the typical clinicopathologic phenotype of FSHD2. The distinct dichotomy between FSHD2 and arhinia phenotypes despite an otherwise poised DUX4 locus implies the presence of novel disease-modifying factors that seem to operate as a switch, resulting in one phenotype and not the other. Identification and further understanding of these disease-modifying factors will provide valuable insight with therapeutic implications for both diseases.


Assuntos
Proteínas Cromossômicas não Histona , Distrofia Muscular Facioescapuloumeral , Proteínas Cromossômicas não Histona/genética , Estudos Transversais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/genética , Fenótipo
10.
Acta Neuropathol Commun ; 10(1): 17, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135626

RESUMO

The descriptions of muscle pathology in dysferlinopathy patients have classically included an inflammatory infiltrate that can mimic inflammatory myopathies. Based on over 20 years of institutional experience in evaluating dystrophic and inflammatory myopathy muscle biopsies at the University of Iowa, we hypothesized the inflammatory histopathology of dysferlinopathy is more similar to limb-girdle pattern muscular dystrophies such as calpainopathy and Becker muscular dystrophy, and distinct from true inflammatory myopathies. Muscle biopsies from 32 dysferlinopathy, 30 calpainopathy, 30 Becker muscular dystrophy, and 30 inflammatory myopathies (15 each of dermatomyositis and inclusion body myositis) were analyzed through digital quantitation of CD3, CD4, CD8, CD20, and PU.1 immunostaining. The expression of MHC class I and deposition of complement C5b-9 was also evaluated. Dysferlinopathy, calpainopathy, and Becker muscular dystrophy muscle biopsies had similar numbers of inflammatory cell infiltrates and significantly fewer CD3+ T-lymphocytes than dermatomyositis (p = 0.05) and inclusion body myositis (p < 0.0001) biopsies. There was no statistically significant difference in the number of PU.1+ macrophages identified in any diagnostic group. MHC class I expression was significantly lower in the limb-girdle pattern muscular dystrophies compared to the inflammatory myopathies (p < 0.0001). In contrast, complement C5b-9 deposition was similar among dysferlinopathy, dermatomyositis, and inclusion body myositis biopsies but significantly greater than calpainopathy and Becker muscular dystrophy biopsies (p = 0.05). Compared to calpainopathy, Becker muscular dystrophy, and inflammatory myopathies, the unique profile of minimal inflammatory cell infiltrates, absent to focal MHC class I, and diffuse myofiber complement C5b-9 deposition is the pathologic signature of dysferlinopathy muscle biopsies.


Assuntos
Inflamação/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular de Duchenne/patologia , Miosite/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
11.
Hum Mutat ; 43(4): 511-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165973

RESUMO

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Humanos , Íntrons/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Sítios de Splice de RNA
12.
Hum Mol Genet ; 31(5): 733-747, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34568901

RESUMO

Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.


Assuntos
Distrofias Musculares , Peixe-Zebra , Animais , Humanos , Laminina/genética , Lisossomos/genética , Lisossomos/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Fatores de Transcrição , Peixe-Zebra/genética
13.
J Mol Diagn ; 23(11): 1506-1514, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384893

RESUMO

The molecular diagnosis of facioscapulohumeral muscular dystrophy (FSHD) relies on detecting contractions of the unique D4Z4 repeat array at the chromosome 4q35 locus in the presence of a permissive 4q35A haplotype. Long, intact DNA molecules are required for accurate sizing of D4Z4 repeats. We validated the use of optical genome mapping to determine size and haplotype of D4Z4 alleles for FSHD analysis. The cohort included 36 unique DNA specimens from fresh blood samples or archived agarose plugs. High-molecular- weight DNA underwent sequence-specific labeling followed by separation and image analysis with data collection on the Saphyr system. D4Z4 allele sizes were calculated and haplotypes determined from the labeling patterns. Each specimen had previous diagnostic testing using restriction enzyme digests with EcoRI, EcoRI/BlnI, XapI, or HindIII, followed by pulsed field gel electrophoresis and Southern blot analysis with appropriate probes. Optical genome mapping detected 4q35 and 10q26 alleles ranging from 1 to 79 D4Z4 repeats and showed strong correlation with Southern blot allele sizing (R2 = 0.95) and haplotyping (133 of 134; 99.4% haplotype match). Analysis of inter-assay and intra-assay runs showed high reproducibility (0.03 to 0.94 %CV). Subsequent optical genome mapping for routine clinical testing from 315 clinical FSHD cases compared favorably with historical result trends. Optical genome mapping is an accurate and highly reproducible method for chromosomal abnormalities associated with FSHD.


Assuntos
Mapeamento Cromossômico/métodos , Testes Genéticos/métodos , Genoma Humano , Técnicas de Diagnóstico Molecular/métodos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Alelos , Aberrações Cromossômicas , Cromossomos Humanos/genética , Estudos de Coortes , DNA/genética , DNA/isolamento & purificação , Confiabilidade dos Dados , Haplótipos , Humanos , Distrofia Muscular Facioescapuloumeral/sangue , Reprodutibilidade dos Testes , Mapeamento por Restrição/métodos
14.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33755597

RESUMO

Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Contração Muscular , Miotonia Congênita , Sarcômeros , Troponina C , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Humanos , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
15.
Acta Neuropathol ; 141(3): 431-453, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33449170

RESUMO

Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.


Assuntos
Conectina/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Miotonia Congênita/patologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto Jovem
16.
Neurology ; 96(7): e1054-e1062, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33443126

RESUMO

OBJECTIVE: To summarize facioscapulohumeral muscular dystrophy (FSHD) diagnostic testing results from the University of Iowa Molecular Pathology Laboratory. METHODS: All FSHD tests performed in the diagnostic laboratory from January 2015 to July 2019 were retrospectively reviewed. Testing was by restriction enzyme digestion and Southern blot analysis with sequencing of SMCHD1, if indicated. Cases were classified as FSHD1 (4q35 EcoRI size ≤40 kb; 1-10 D4Z4 repeats), FSHD2 (permissive 4q35A allele, D4Z4 hypomethylation, and pathogenic SMCHD1 variant), or non-FSHD1,2. We also noted cases with borderline EcoRI fragment size (41-43 kb; 11 D4Z4 repeats), cases that meet criteria for both FSHD1 and FSHD2, somatic mosaicism, and cases with hybrid alleles that add complexity to test interpretation. RESULTS: Of the 1,594 patients with FSHD tests included in the analysis, 703 (44.1%) were diagnosed with FSHD. Among these positive tests, 664 (94.5%) met criteria for FSHD1 and 39 (5.5%) met criteria for FSHD2. Of all 1,594 cases, 20 (1.3%) had a 4q35 allele of borderline size, 23 (1.5%) were somatic mosaics, and 328 (20.9%) had undergone translocation events. Considering only cases with at least 1 4q35A allele, D4Z4 repeat number differed significantly among groups: FSHD1 cases median 6.0 (interquartile range [IQR] 4-7) repeats, FSHD2 cases 15.0 (IQR 12-22) repeats, and non-FSHD1,2 cases 28.0 (IQR 19-40) repeats. CONCLUSION: FSHD1 accounts for 94.5% of genetically confirmed cases of FSHD. The data show a continuum of D4Z4 repeat numbers with FSHD1 samples having the fewest, FSHD2 an intermediate number, and non-FSHD1,2 the most.


Assuntos
Alelos , Proteínas Cromossômicas não Histona/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Mutação , Metilação de DNA , Testes Diagnósticos de Rotina , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Patologia Molecular , Fenótipo
19.
Neurol Genet ; 6(4): e468, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32754643

RESUMO

OBJECTIVE: Description of a new variant of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) gene causing congenital myasthenic syndrome (CMS) in 3 children from 2 unrelated families. METHODS: Muscle biopsies, EMG, and whole-exome sequencing were performed. RESULTS: All 3 patients presented with congenital hypotonia, muscle weakness, respiratory insufficiency, head lag, areflexia, and gastrointestinal dysfunction. Genetic analysis identified a homozygous frameshift insertion in the GFPT1 gene (NM_001244710.1: c.686dupC; p.Arg230Ter) that was shared by all 3 patients. In one of the patients, inheritance of the variant was through uniparental disomy (UPD) with maternal origin. Repetitive nerve stimulation and single-fiber EMG was consistent with the clinical diagnosis of CMS with a postjunctional defect. Ultrastructural evaluation of the muscle biopsy from one of the patients showed extremely attenuated postsynaptic folds at neuromuscular junctions and extensive autophagic vacuolar pathology. CONCLUSIONS: These results expand on the spectrum of known loss-of-function GFPT1 mutations in CMS12 and in one family demonstrate a novel mode of inheritance due to UPD.

20.
J Neuropathol Exp Neurol ; 79(9): 998-1010, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827036

RESUMO

Congenital muscular dystrophy type 1A (MDC1A) is caused by recessive variants in laminin α2 (LAMA2). Patients have been found to have white matter signal abnormalities on magnetic resonance imaging (MRI) but rarely structural brain abnormalities. We describe the autopsy neuropathology in a 17-year-old with white matter signal abnormalities on brain MRI. Dystrophic pathology was observed in skeletal muscle, and the sural nerve manifested a mild degree of segmental demyelination and remyelination. A diffuse, bilateral cobblestone appearance, and numerous points of fusion between adjacent gyri were apparent on gross examination of the cerebrum. Brain histopathology included focal disruptions of the glia limitans associated with abnormal cerebral cortical lamination or arrested cerebellar granule cell migration. Subcortical nodular heterotopia was present within the cerebellar hemispheres. Sampling of the centrum semiovale revealed no light microscopic evidence of leukoencephalopathy. Three additional MDC1A patients were diagnosed with cobblestone malformation on brain MRI. Unlike the autopsied patient whose brain had a symmetric distribution of cobblestone pathology, the latter patients had asymmetric involvement, most severe in the occipital lobes. These cases demonstrate that cobblestone malformation may be an important manifestation of the brain pathology in MDC1A and can be present even when patients have a structurally normal brain MRI.


Assuntos
Encéfalo/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Adolescente , Humanos , Laminina/deficiência , Laminina/genética , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...